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ABSTRACT

We describe the implementation and performance of a genetic algorithm (GA) which evolves and combines image
processing tools for multispectral imagery (MSI) datasets. Existing algorithms for particular features can also be
“re-tuned” and combined with the newly evolved image processing tools to rapidly produce customized feature
extraction tools. First results from our software system were presented previously. We now report on work extending
our system to look for a range of broad-area features in MSI datasets. These features demand an integrated spatio-
spectral approach, which our system is designed to use.

We describe our chromosomal representation of candidate image processing algorithms, and discuss our set of
image operators. Our application has been geospatial feature extraction using publicly available MSI and hyper-
spectral imagery (HSI). We demonstrate our system on NASA/Jet Propulsion Laboratory’s Airborne Visible and
Infrared Imaging Spectrometer (AVIRIS) HSI which has been processed to simulate MSI data from the Department
of Energy’s Multispectral Thermal Imager (MTI) instrument. We exhibit some of our evolved algorithms, and discuss
their operation and performance.

Keywords: Evolutionary Computation, Genetic Algorithms, Image Processing, Remote Sensing, Multispectral
Imagery, Hyperspectral Imagery.

1. INTRODUCTION

The remote-sensing community nowadays enjoys the benefits of highly capable collection platforms operating in
a range of spectral bands and spatial resolutions. New data distribution and storage technologies have enabled
accumulation of this data into ever larger archives. As a consequence, the bottle-neck to successful and timely
exploitation of all this information rests more than ever on the availability of suitable high-level tools to assist the
researcher and analyst. Mature tools often exist for tasks of understood importance that are based on traditional
data formats (e.g., electro-optical panchromatic imagery), but novel features of interest can arise, and new sensor
technologies often require redevelopment of old tool-kits. With multi-sensor platforms such as Landsat, SPOT, and
Terra, the analyst can now search for spectral, spatial, and possibly hybrid spatio-spectral signatures from visible
to thermal wavelengths. Our own work in the field of remote sensing has led us to seek an accelerated tool-maker.
Since creating and developing individual algorithms is so important and yet so expensive, we are investigating a
machine-learning approach to this problem.

Evolution in natural systems have inspired development of a group of powerful yet flexible optimization methods
known collectively as evolutionary computation (EC). The modern synthesis derives from work performed in the 60s
and 70s by researchers such as Holland,1 Rechenberg,2 and Fogel et al..3 While the various schools founded by
these pioneers have differences, their approaches share a common theme of optimization performed by a competing
population of individuals in which a process of selection and reproduction with modification is occurring.

A crucial issue when using EC is how to represent candidate solutions so that they can be manipulated by EC
effectively. Our system evolves individuals that represent possible image processing algorithms (“candidate tools”),
so we have based our approach on ideas from the field of genetic programming.4 Genetic programming (GP) is
essentially a framework for developing executable programs using EC methods. GP has been the subject of a huge
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Figure 1. Aladdin GUI for marking-up training data and inspecting results. Note that Aladdin relies heavily on
color, which does not show up well in this image. Here we show the main Aladdin frame (on left) containing the
working image, which is a grey-scale representation of the raw data. The raw data is displayed in a daughter frame
(on right) slaved to follow paning and zooming of the main frame. Training data is provided by painting with the
mouse on the working image. Results are eventually displayed overlayed on the working image (not shown).

amount of research this decade and has been applied to a wide range of applications, from circuit design,4 to share
price prediction.5 With particular relevance to this proposal, GP has also been applied to image-processing problems,
including: edge detection6; face recognition7; image segmentation8; image compression9; and feature extraction in
remote sensing images.10–13

In the next section we give a brief overview of our software architecture. In the following section we provide
some results obtained using our prototype system and remote sensing data, and close with a summary and some
conclusions.

2. GENIE

We call our feature detection system Genie (GENetic Image Exploitation)11–13 Genie employs a classic evolution-
ary paradigm: a population of candidate image processing tools is maintained, and each individual is assessed and
assigned a fitness value. The fitness of an individual is based on an objective measure of its performance in its
environment, which for our case is a set of user-provided training scenes. After fitness determination, the evolution-
ary operators of selection, crossover and mutation are applied to the population and the entire process of fitness
evaluation, selection, crossover and mutation is iterated until some stopping condition is satisfied.

2.1. Training Data

The environment for each individual in the population consists of data planes, each plane corresponding to the
training image in a separate spectral channel, together with a weight plane and a truth plane. The weight plane
identifies the pixels to be used in training, and the truth plane locates the features of interest in the training data.
The data in the weight and truth planes may be derived from an actual ground campaign (ie, collected on the ground
at the time the image was taken), may be the result of applying some existing algorithm, or may be marked-up by
hand using the best judgement of an analyst looking at the data. Since providing sufficient quantities of training data
is crucial to the success of any machine learning approach, our system employs a Java-based tool called Aladdin to
assist the analyst in making judgements about and marking up the data. Through Aladdin, the analyst can view a
multi-spectral image in a variety of ways, and can mark up training data by painting directly on the image using the
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mouse. Training data is ternary-valued, with the possible values being “true”, “false”, and “unknown”. True defines
areas where the analyst is confident that the feature of interest does exist. False defines areas where the analyst is
confident that the feature of interest does not exist.

Figure 1 shows a screen capture of an example session. The Aladdin GUI relies heavily on color. The main
Aladdin frame contains a working image, which is a grey-scale representation of the raw data. The raw data is
displayed in a daughter frame slaved to follow paning and zooming of the main frame. For multispectral imagery
with more than three spectral bands, the user can choose which bands are combined to form a false-color image
in the raw data window. Training data is provided by painting with the mouse on the working image. Results
are displayed overlayed on the working image. The training data can be overlaid on the results and the resulting
true/false positives/negatives visualized using a simple (user selectable) four-color code. The analyst can use that
information to modify their training data and provide additional examples of true or false pixels, before rerunning
Genie to refine the evolved solution.

2.2. Encoding Individuals

Each individual chromosome in the population consists of a fixed-length string of genes. Each gene in Genie
corresponds to a primitive image processing operation, and so the whole chromosome describes an algorithm consisting
of a sequence of primitive image processing steps.

2.2.1. Genes and Chromosomes

A single gene consists of an operator name, plus a variable number of input arguments specifying where input is
to come from, and output arguments specifying where output is to be written to, plus parameters modifying how
the operator works. Different operators require different numbers of parameters. The operators used in Genie take
one or more distinct image planes as input, and generally produce a single image plane as output. Input can be
taken from any data planes in the training data image cube. Output is written to one of a number of scratch planes,
temporary workspaces where an image plane can be stored. Genes can also take input from scratch planes, but only
if that scratch plane has been written to by another gene positioned earlier in the chromosome sequence.

The image processing algorithm that a given chromosome represents can be thought of as a directed acyclic
graph where the non-terminal nodes are primitive image processing operations, and the terminal nodes are individual
image planes extracted from the multi-spectral image used as input. The scratch planes are the “glue” that combine
primitive operations into image processing pipelines. Traditional GP (Ref. 4) uses a variable sized (within limits) tree
representation for algorithms. Our representation differs in that it allows for reuse of values computed by sub-trees
since many nodes can access the same scratch plane, i.e. the resulting algorithm is a graph rather than a tree. It
also differs in that the total number of nodes is fixed (although not all of these may be actually used in the final
graph), and crossover is carried out directly on the linear representation.

We have restricted our “gene pool” to a set of useful primitive image processing operators. These include spectral,
spatial, logical and thresholding operators. Table 1 outlines these operators. For details regarding Laws textural
operators, the interested reader is referred to Refs. 14,15.

The set of morphological operators is restricted to function-set processing morphological operators, i.e. gray-scale
morphological operators having a flat structuring element. The sizes and shapes of the structuring elements used
by these operators is also restricted to a pre-defined set of primitive shapes, which includes, square, circle, diamond,
horizontal cross and diagonal cross, and horizontal, diagonal and vertical lines. The shape and size of the structuring
element are defined by operator parameters. Other local neighborhood/windowing operators such as mean, median,
etc. specify their kernels/windows in a similar way. The spectral operators have been chosen to permit weighted
sums, differences and ratios of data and/or scratch planes.

We use a notation for genes11 that is most easily illustrated by an example: the gene [ADDP rD0 rS1 wS2] applies
pixel-by-pixel addition to two input planes, read from data plane 0 and from scratch plane 1, and writes its output
to scratch plane 2. Any additional required operator parameters are listed after the input and output arguments.

Note that although all chromosomes have the same fixed number of genes, the effective length of the resulting
algorithm graph may be smaller than this. For instance, an operator may write to a scratch plane that is then
overwritten by another gene before anything reads from it. Genie performs an analysis of chromosome graphs when
they are created and only carries out those processing steps that actually affect the final result. Therefore, the fixed
length of the chromosome acts as a maximum effective length.
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Table 1. Image Processing Operators in the Gene Pool

Code Operator Description Code Operator Description

ADDP Add Planes MEAN Local Mean
SUBP Subtract Planes VARIANCE Local Variance
ADDS Add Scalar SKEWNESS Local Skewness
SUBS Subtract Scalar KURTOSIS Local Kurtosis
MULTP Multiply Planes MEDIAN Local Median
DIVP Divide Planes SD Local Standard Deviation
MULTS Multiply by Scalar EROD Erosion
DIVS Divide by Scalar DIL Dilation
SQR Square OPEN Opening
SQRT Square Root CLOS Closing
LINSCL Linear Scale OPCL Open-Closing

LINCOMB Linear Combination CLOP Close-Opening
SOBEL Sobel Gradient OPREC Open with Reconstruction

PREWITT Prewitt Gradient CLREC Close with Reconstruction
AND And Planes HDOME H-Dome
OR Or Planes HBASIN H-Basin
CL Clip Low CH Clip High

LAWB Laws Textural Operator S3T × L3 LAWC Laws Textural Operator L3T × E3
LAWD Laws Textural Operator E3T × E3 LAWE Laws Textural Operator S3T × E3
LAWF Laws Textural Operator L3T × S3 LAWG Laws Textural Operator E3T × S3
LAWH Laws Textural Operator S3T × S3

2.3. Supervised Classification

Complete (or “hard”) classification requires that we end up with a single binary-valued output plane from the
algorithm. It would be possible to treat, say, the contents of the first scratch plane after executing the candidate tool
as the final output for that candidate (thresholding would generally be required to obtain a binary result, though
Genie can choose to apply its own boolean thresholding functions). However, we have found it to be useful to
perform the final classification using a non-evolutionary algorithm, and have implemented a supervised classifier.

To do this, we first select a subset of the scratch planes and data planes to be answer planes. Typically in our
experiments this subset consists of just the scratch planes. We then use the provided training data and the contents
of the answer planes to derive the Fisher Discriminant, which is the linear combination of the answer planes that
maximizes the mean separation in spectral terms between those pixels marked up as “true” and those pixels marked
up as “false”, normalized by the “total variance” in the projection defined by the linear combination. See Ref. 16
for details of this discriminant.

The output of the discriminant-finding phase is a gray-scale image. This is reduced to a binary image by using
Brent’s method17 to find the threshold value that minimizes the total number of misclassifications (false positives
plus false negatives) on the training data.

2.4. Fitness Evaluation

The fitness of a candidate solution is given by the degree of agreement between the final binary output plane and
the training data. This degree of agreement is determined by the Hamming distance between the final binary output
of the algorithm and the training data, with only pixels marked as true or false (as recorded in the weight plane)
contributing towards the metric. The Hamming distance is then normalized so that a perfect score is 1000.

2.5. Software Implementation

Our genetic algorithm code has been implemented in object-oriented Perl. This provides a convenient environment
for the string manipulations required by the evolutionary operations, and easy access to the underlying operating
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Figure 2. Software Architecture of the System Described. Note that the feature depicted on the right of this
diagram represents the input data, training data, scratch planes, and weight and truth planes.

system (Linux). Chromosome fitness evaluation is the computationally intensive part of the evolutionary process,
typically taking 90% of our total processing time (as reported by the GNU “time” system utility). We currently use
RSI’s IDL language and image processing environment for its large set of primitive image processing operators, its
rich visualization environment, and its ability to handle a diverse set of imagery formats. Within IDL, individual
genes correspond to single primitive image operators, which are coded as IDL procedures, with a chromosome
representation being coded as an IDL batch executable. Many of our primitive operators do not exist in standard
IDL, so we have developed an external library of C code called by IDL. In the present implementation, an IDL
session is opened at the start of a run and communicates with the Perl code via a two-way unix pipe. This pipe is
a low-bandwidth connection. It is only the IDL session that needs to access the input and training data (possibly
hundreds of Megabytes), which requires a high-bandwidth connection. The Aladdin training data mark-up tool
was written in Java2. Fig. 2 shows the software architecture of the system.

3. RESULTS

3.1. Remotely-Sensed Data

The remotely-sensed images used in this paper are 10-channel simulated Multispectral Thermal Imager (MTI) data.
The scenes are produced from 224-channel Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) hyperspec-
tral imagery (HSI) data,18 each channel in our dataset having 614×512 pixels. Spectral bands are in radiance units,
and have not been corrected for atmosphere or Sun angle. Ground size for pixels is the same as that of AVIRIS,
and has a nominal value of 20m in all bands. The bands are spatially co-registered to one another, but are not
georeferenced or orthorectified. The 10 sythesized channels are intended to represent reflectance data at visible to
medium wave infrared (MWIR) wavelengths. We do not include any thermal/long wave IR bands, as these cannot
be synthesized from the AVIRIS bands available to us (AVIRIS bands cover wavelengths from 0.41 to 2.45µm). For
details regarding the MTI mission and instrumentation, the interested reader is referred to Ref. 19 and references
therein.

The images displayed are false-color images (which have then been converted to gray-scale in the printing process).
The color mappings used are the same for all images shown. As we are interested in mapping vegetation and water,
we use a standard Color/Infrared (CIR) pattern of a near IR band for the red component, a visible red band for
the green component, and a visible green/yellow band for the blue component. In addition, the images have been
contrast enhanced. The choice of color mappings was arbitrary, in that it was a personal decision made by the
analyst, made in order to best highlight the feature of interest, from his/her perspective and thus enable him/her
to produce the best possible training data. Choice of color-mappings, together with the contrast-enhancement tool,
are important and very useful features of Aladdin.

5



Figure 3. Training scene is taken from an AVIRIS overflight of NASA Moffet Field Air Station.

3.2. Automatic Feature Extraction for terrain classification

We now report on work applying Genie to the task of terrain classification. Our training scene, Fig. 3, is taken from
an AVIRIS flight over NASA Moffet Field Air Station. We wish to demonstrate the ability of Genie to combine
standard spatial and spectral image processing operations to produce a simple terrain classification of this scene.
We choose three broad features, which we label “roads/buildings”, “vegetation”, and “water”. With our iterative
approach to ground truth, developing algorithms for these simple classes can represent the first step to evolving more
specialized operators (e.g., crop-specific vegetation finders). We evolve our algorithms on our single training scene,
and test robustness by applying them without modification to a separate scene from the same AVIRIS flight. A more
exacting test of robustness would be to apply these algorithms to AVIRIS scenes under widely different conditions
of time, weather, and location. Work in this direction is currently in progress and will be reported on elsewhere.

Genie is designed to evolve single-feature extraction algorithms, so to carry out our terrain classification we
produce three separate sets of training data using our Aladdin tool. In the absence of ground and meteorological
data, this introduces a certain level of error into our training set. To date, performance of our system on a range
of broad-area feature extraction tasks gives us confidence that Genie is reasonably insensitive to a small amount of
misclassified training data. Our training data, showing the “truth” as marked out by an analyst, together with the
output of the evolved algorithms, is shown in Fig. 4.

The system was run for with a population of 50 chromosomes, each having a fixed length of 20 genes, and
5 available scratch planes. The number of generations required to reach a high fitness solution varied for each
feature. The water extraction algorithm proved the easiest to develop, reaching an almost perfect score after only
5 generations. The Roads/buildings and vegetation feature extraction tasks required longer periods of evolution.
For both these features, the GA was allowed to evolve until it converged, which happened after approximately 50
generations for both features. Running on a fast (500MHz) Linux/Intel Pentium workstation, these longer runs
required approximately two hours of wall-clock time. We are currently investigating parallelization of our code to
bring execution time down to a few 10’s of minutes.
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Figure 4. Analyst supplied training data (on left) and evolved tool output (on right) for, from top: roads/buildings,
vegetation, water. “True” pixels appear light grey, “false” pixels appear as medium grey. Unclassified pixels appear
black.

The “short” (redundant genes stripped out) version of the chromosomes found are exhibited below.

Roads/buildings:

[CLOS rD5 wS0 1 1][ASF CLOP rD0 wS3 3 0][RANGE rS0 wS4 3 1][LAPLAC5 rS4 wS1]

[LAPLAC3 rD7 wS4][SUBS rD8 wS2 .2][ASF CLOP rS1 wS1 3 0][ADDP rS4 rD6 wS4]

[ADDP rD0 rS2 wS2][EROD rD8 wS0 1 1][PREWITT GRAD rS4 wS4][CLOP rS4 wS4 1 1]
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Figure 5. Combination of the results of Fig. 4 above. Individual results are mapped to primary color channels,
with roads/buildings marked red, vegetation marked green, and water marked blue. Colors are allowed to mix, so
that, e.g., if both the roads/buildings (red) tool and the vegetation (green) tool both indicate a positive detection in
a given pixel, that pixel is painted yellow. Unclassified pixels are marked black.

Vegetation:

[ADDS rD8 wS4 .2][MORPH LAPLAC rD1 wS1 3 1][MEAN rD6 wS2 3 1]

[ADDP rS1 rD9 wS3][SQR rD0 wS0][OPCL rS2 wS2 1 0][SUBP rS4 rD1 wS4]

[MULTP rD5 rS3 wS3][OPCL rS2 wS2 1 1][ASF CLOP rS4 wS4 3 0]

Water:

[LAWH rD5 wS3][H DOME rD2 wS2 20][ADDS rD6 wS4 .2] [MORPH LAPLAC rS4 wS4 3 1]

[LAWG rS3 wS3][DIL rS3 wS3 1 1][SKEWNESS rS3 wS3 3 1] [MORPH LAPLAC rS2 wS2 3 1]

[PREWITT X rS2 wS2][AND rD8 rD1 wS1][H BASIN rS2 wS0 20] [H BASIN rS3 wS3 20]

[BO rS3 wS3 0.95][ASF CLOP rS1 wS1 3 1]

Figure 5 shows the result of combining the individual results of Fig. 4. Our three general features are mapped
to the primary color channels, with roads/buildings mapped red, vegetation mapped to green, and water mapped
to blue. Colors are allowed to mix, so that, e.g., if both the roads/buildings (red value of 255) mask and the
vegetation (green value of 255) mask both indicate a positive detection in a given pixel, that pixel is displayed
yellow. Unclassified pixels are marked black. The evolved algorithms have been able to successfully work together
to produce a qualitatively good reduction of the scene to a small number of general features.

3.3. Generalization and validation

In order to test the robustness of the algorithms found, they were applied to out-of-training-sample (“test scene”)
data, as described previously. The test scene and results are shown in Fig. 6. It can be seen that the evolved
algorithms have again produced a reasonable segmentation of the scene.

It is interesting to have some kind of objective measure of the algorithm’s performance on the out-of-training-
sample data. To this end an analyst marked up training data (i.e. true and false) for each of the three general
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Figure 6. Result of application of the evolved tools to a new scene from the same AVIRIS campaign.

Table 2. Summary of results: Results by feature for our training scene and test scene.

Feature Train Test

Fitness Detection False Alarm Fitness Detection False Alarm
Rate [%] Rate [%] Rate [%] Rate [%]

Roads/Buildings 991 99 0.7 923 91 6.2
Vegetation 970 98 3.5 994 100 1.2
Water 999 100 0.1 993 99 0.3

features in the test data. This enabled determination of a fitness for the algorithm on this data as well as detection
and false alarm rates. Our in-scene and out-of-scene quantitative results are summarized in Table 2. As might be
expected, the evolved water extraction tool shows the best performance. The poorest performing evolved algorithm
is the roads/building finder, which still manages to achieve a 91% detection rate and 6.5% false alarm rate on the
out-of-scene data. Given the diversity of objects that may be labelled “roads/buildings”, and the limited quantity
of training data used here, we regard this result as encouraging.

4. COMPARISON WITH OTHER TECHNIQUES

In order to compare the feature-extraction technique described here to a more conventional technique, we used
the Fisher discriminant, combined with the intelligent thresholding, as described previously, to try and extract the
same features in the images shown/described above. This approach is based purely on spectral information. On
application to the data used in the training run (Fig. 4), and on application to the out-of-training-sample scene,
this “traditional” approach produced results summarized in Table 3. On the training scene, the Fisher discriminant
is in each case able to find a satisfactory match to the training data, though still below the performance of the
algorithms produced by the Genie system. Performance of the Fisher discriminant/threshold on the non-training
data is significantly below the performance of the evolved algorithms, and the purely spectral approach essentially
fails for vegetation and roads/buildings.
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Table 3. Comparison: Results by feature for a purely spectral Fisher discriminant and intelligent threshold for
our training scene and test scene.

Feature Train Test

Fitness Detection False Alarm Fitness Detection False Alarm
Rate [%] Rate [%] Rate [%] Rate [%]

Roads/Buildings 962 95 2.7 208 30 89
Vegetation 959 96 4.3 419 28 44
Water 999 100 0.1 958 100 8.3

5. SUMMARY AND CONCLUSIONS

A system for the automatic generation of remote-sensing feature detection algorithms has been described. This
system differs from previously described systems in that it combines a hybrid system of evolutionary techniques
and more traditional supervised classification methods. Its effectiveness in searching for useful algorithms has been
shown, together with the robustness of the algorithms discovered. It has also been shown to significantly out-perform
a more traditional, purely-spectral approach.
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